Exercise 12

In Exercises 11-14, (a) solve the given equation by the method of characteristic curves, and (b) check your answer by plugging it back into the equation.

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0 .
$$

Solution

Divide both sides by x.

$$
\frac{\partial u}{\partial x}+\frac{y}{x} \frac{\partial u}{\partial y}=0
$$

The differential of a two-dimensional function $g=g(x, y)$ is given by

$$
d g=\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y
$$

Dividing both sides by $d x$ yields the fundamental relationship between the total derivative of g and its partial derivatives.

$$
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\frac{d y}{d x} \frac{\partial g}{\partial y}
$$

Comparing this to the PDE, we see that along the (characteristic) curves in the $x y$-plane defined by

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y}{x} \tag{1}
\end{equation*}
$$

the PDE reduces to the ODE,

$$
\begin{equation*}
\frac{d u}{d x}=0 . \tag{2}
\end{equation*}
$$

Solve equation (1), using ξ for the characteristic coordinate.

$$
\frac{d y}{y}=\frac{d x}{x} \quad \rightarrow \quad \int \frac{d y}{y}=\int \frac{d x}{x} \quad \rightarrow \quad \ln |y|=\ln |x|+\xi \quad \rightarrow \quad \xi=\ln |y|-\ln |x|=\ln \left|\frac{y}{x}\right|
$$

Then solve equation (2) by integrating both sides with respect to x.

$$
u(x, \xi)=f(\xi)
$$

Now that u is known, change back to the original variables.

$$
u(x, y)=f\left(\ln \left|\frac{y}{x}\right|\right)=F\left(\frac{y}{x}\right)
$$

Here f and F are arbitrary functions. Compute the first derivatives to check the solution.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=F^{\prime}\left(\frac{y}{x}\right) \cdot \frac{\partial}{\partial x}\left(\frac{y}{x}\right)=F^{\prime}\left(\frac{y}{x}\right) \cdot\left(-\frac{y}{x^{2}}\right)=-\frac{y}{x^{2}} F^{\prime} \\
& \frac{\partial u}{\partial y}=F^{\prime}\left(\frac{y}{x}\right) \cdot \frac{\partial}{\partial y}\left(\frac{y}{x}\right)=F^{\prime}\left(\frac{y}{x}\right) \cdot\left(\frac{1}{x}\right)=\frac{1}{x} F^{\prime}
\end{aligned}
$$

As a result,

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{y}{x} F^{\prime}+\frac{y}{x} F^{\prime}=0 .
$$

